3.54 \(\int \frac{\cos ^4(c+d x)}{(a+a \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=114 \[ -\frac{16 \sin (c+d x)}{3 a^2 d}-\frac{8 \sin (c+d x) \cos ^2(c+d x)}{3 a^2 d (\cos (c+d x)+1)}+\frac{7 \sin (c+d x) \cos (c+d x)}{2 a^2 d}+\frac{7 x}{2 a^2}-\frac{\sin (c+d x) \cos ^3(c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

[Out]

(7*x)/(2*a^2) - (16*Sin[c + d*x])/(3*a^2*d) + (7*Cos[c + d*x]*Sin[c + d*x])/(2*a^2*d) - (8*Cos[c + d*x]^2*Sin[
c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])) - (Cos[c + d*x]^3*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2)

________________________________________________________________________________________

Rubi [A]  time = 0.15247, antiderivative size = 114, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {2765, 2977, 2734} \[ -\frac{16 \sin (c+d x)}{3 a^2 d}-\frac{8 \sin (c+d x) \cos ^2(c+d x)}{3 a^2 d (\cos (c+d x)+1)}+\frac{7 \sin (c+d x) \cos (c+d x)}{2 a^2 d}+\frac{7 x}{2 a^2}-\frac{\sin (c+d x) \cos ^3(c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^4/(a + a*Cos[c + d*x])^2,x]

[Out]

(7*x)/(2*a^2) - (16*Sin[c + d*x])/(3*a^2*d) + (7*Cos[c + d*x]*Sin[c + d*x])/(2*a^2*d) - (8*Cos[c + d*x]^2*Sin[
c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])) - (Cos[c + d*x]^3*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2)

Rule 2765

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[((b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1))/(a*f*(2*m + 1)), x] + Dist[1/
(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[b*(c^2*(m + 1) + d^2*(n -
1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ
[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2977

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2734

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((2*a*c
+ b*d)*x)/2, x] + (-Simp[((b*c + a*d)*Cos[e + f*x])/f, x] - Simp[(b*d*Cos[e + f*x]*Sin[e + f*x])/(2*f), x]) /;
 FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rubi steps

\begin{align*} \int \frac{\cos ^4(c+d x)}{(a+a \cos (c+d x))^2} \, dx &=-\frac{\cos ^3(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac{\int \frac{\cos ^2(c+d x) (3 a-5 a \cos (c+d x))}{a+a \cos (c+d x)} \, dx}{3 a^2}\\ &=-\frac{8 \cos ^2(c+d x) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac{\cos ^3(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac{\int \cos (c+d x) \left (16 a^2-21 a^2 \cos (c+d x)\right ) \, dx}{3 a^4}\\ &=\frac{7 x}{2 a^2}-\frac{16 \sin (c+d x)}{3 a^2 d}+\frac{7 \cos (c+d x) \sin (c+d x)}{2 a^2 d}-\frac{8 \cos ^2(c+d x) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac{\cos ^3(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}\\ \end{align*}

Mathematica [A]  time = 0.303205, size = 177, normalized size = 1.55 \[ \frac{\sec \left (\frac{c}{2}\right ) \sec ^3\left (\frac{1}{2} (c+d x)\right ) \left (147 \sin \left (c+\frac{d x}{2}\right )-239 \sin \left (c+\frac{3 d x}{2}\right )-63 \sin \left (2 c+\frac{3 d x}{2}\right )-15 \sin \left (2 c+\frac{5 d x}{2}\right )-15 \sin \left (3 c+\frac{5 d x}{2}\right )+3 \sin \left (3 c+\frac{7 d x}{2}\right )+3 \sin \left (4 c+\frac{7 d x}{2}\right )+252 d x \cos \left (c+\frac{d x}{2}\right )+84 d x \cos \left (c+\frac{3 d x}{2}\right )+84 d x \cos \left (2 c+\frac{3 d x}{2}\right )-381 \sin \left (\frac{d x}{2}\right )+252 d x \cos \left (\frac{d x}{2}\right )\right )}{192 a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^4/(a + a*Cos[c + d*x])^2,x]

[Out]

(Sec[c/2]*Sec[(c + d*x)/2]^3*(252*d*x*Cos[(d*x)/2] + 252*d*x*Cos[c + (d*x)/2] + 84*d*x*Cos[c + (3*d*x)/2] + 84
*d*x*Cos[2*c + (3*d*x)/2] - 381*Sin[(d*x)/2] + 147*Sin[c + (d*x)/2] - 239*Sin[c + (3*d*x)/2] - 63*Sin[2*c + (3
*d*x)/2] - 15*Sin[2*c + (5*d*x)/2] - 15*Sin[3*c + (5*d*x)/2] + 3*Sin[3*c + (7*d*x)/2] + 3*Sin[4*c + (7*d*x)/2]
))/(192*a^2*d)

________________________________________________________________________________________

Maple [A]  time = 0.046, size = 122, normalized size = 1.1 \begin{align*}{\frac{1}{6\,{a}^{2}d} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}-{\frac{7}{2\,{a}^{2}d}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-5\,{\frac{ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}}{{a}^{2}d \left ( 1+ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) ^{2}}}-3\,{\frac{\tan \left ( 1/2\,dx+c/2 \right ) }{{a}^{2}d \left ( 1+ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) ^{2}}}+7\,{\frac{\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) }{{a}^{2}d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4/(a+cos(d*x+c)*a)^2,x)

[Out]

1/6/d/a^2*tan(1/2*d*x+1/2*c)^3-7/2/d/a^2*tan(1/2*d*x+1/2*c)-5/d/a^2/(1+tan(1/2*d*x+1/2*c)^2)^2*tan(1/2*d*x+1/2
*c)^3-3/d/a^2/(1+tan(1/2*d*x+1/2*c)^2)^2*tan(1/2*d*x+1/2*c)+7/d/a^2*arctan(tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [A]  time = 1.69111, size = 221, normalized size = 1.94 \begin{align*} -\frac{\frac{6 \,{\left (\frac{3 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac{5 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}\right )}}{a^{2} + \frac{2 \, a^{2} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{a^{2} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}} + \frac{\frac{21 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a^{2}} - \frac{42 \, \arctan \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/6*(6*(3*sin(d*x + c)/(cos(d*x + c) + 1) + 5*sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/(a^2 + 2*a^2*sin(d*x + c)^
2/(cos(d*x + c) + 1)^2 + a^2*sin(d*x + c)^4/(cos(d*x + c) + 1)^4) + (21*sin(d*x + c)/(cos(d*x + c) + 1) - sin(
d*x + c)^3/(cos(d*x + c) + 1)^3)/a^2 - 42*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a^2)/d

________________________________________________________________________________________

Fricas [A]  time = 1.64576, size = 257, normalized size = 2.25 \begin{align*} \frac{21 \, d x \cos \left (d x + c\right )^{2} + 42 \, d x \cos \left (d x + c\right ) + 21 \, d x +{\left (3 \, \cos \left (d x + c\right )^{3} - 6 \, \cos \left (d x + c\right )^{2} - 43 \, \cos \left (d x + c\right ) - 32\right )} \sin \left (d x + c\right )}{6 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

1/6*(21*d*x*cos(d*x + c)^2 + 42*d*x*cos(d*x + c) + 21*d*x + (3*cos(d*x + c)^3 - 6*cos(d*x + c)^2 - 43*cos(d*x
+ c) - 32)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [A]  time = 10.7026, size = 413, normalized size = 3.62 \begin{align*} \begin{cases} \frac{21 d x \tan ^{4}{\left (\frac{c}{2} + \frac{d x}{2} \right )}}{6 a^{2} d \tan ^{4}{\left (\frac{c}{2} + \frac{d x}{2} \right )} + 12 a^{2} d \tan ^{2}{\left (\frac{c}{2} + \frac{d x}{2} \right )} + 6 a^{2} d} + \frac{42 d x \tan ^{2}{\left (\frac{c}{2} + \frac{d x}{2} \right )}}{6 a^{2} d \tan ^{4}{\left (\frac{c}{2} + \frac{d x}{2} \right )} + 12 a^{2} d \tan ^{2}{\left (\frac{c}{2} + \frac{d x}{2} \right )} + 6 a^{2} d} + \frac{21 d x}{6 a^{2} d \tan ^{4}{\left (\frac{c}{2} + \frac{d x}{2} \right )} + 12 a^{2} d \tan ^{2}{\left (\frac{c}{2} + \frac{d x}{2} \right )} + 6 a^{2} d} + \frac{\tan ^{7}{\left (\frac{c}{2} + \frac{d x}{2} \right )}}{6 a^{2} d \tan ^{4}{\left (\frac{c}{2} + \frac{d x}{2} \right )} + 12 a^{2} d \tan ^{2}{\left (\frac{c}{2} + \frac{d x}{2} \right )} + 6 a^{2} d} - \frac{19 \tan ^{5}{\left (\frac{c}{2} + \frac{d x}{2} \right )}}{6 a^{2} d \tan ^{4}{\left (\frac{c}{2} + \frac{d x}{2} \right )} + 12 a^{2} d \tan ^{2}{\left (\frac{c}{2} + \frac{d x}{2} \right )} + 6 a^{2} d} - \frac{71 \tan ^{3}{\left (\frac{c}{2} + \frac{d x}{2} \right )}}{6 a^{2} d \tan ^{4}{\left (\frac{c}{2} + \frac{d x}{2} \right )} + 12 a^{2} d \tan ^{2}{\left (\frac{c}{2} + \frac{d x}{2} \right )} + 6 a^{2} d} - \frac{39 \tan{\left (\frac{c}{2} + \frac{d x}{2} \right )}}{6 a^{2} d \tan ^{4}{\left (\frac{c}{2} + \frac{d x}{2} \right )} + 12 a^{2} d \tan ^{2}{\left (\frac{c}{2} + \frac{d x}{2} \right )} + 6 a^{2} d} & \text{for}\: d \neq 0 \\\frac{x \cos ^{4}{\left (c \right )}}{\left (a \cos{\left (c \right )} + a\right )^{2}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4/(a+a*cos(d*x+c))**2,x)

[Out]

Piecewise((21*d*x*tan(c/2 + d*x/2)**4/(6*a**2*d*tan(c/2 + d*x/2)**4 + 12*a**2*d*tan(c/2 + d*x/2)**2 + 6*a**2*d
) + 42*d*x*tan(c/2 + d*x/2)**2/(6*a**2*d*tan(c/2 + d*x/2)**4 + 12*a**2*d*tan(c/2 + d*x/2)**2 + 6*a**2*d) + 21*
d*x/(6*a**2*d*tan(c/2 + d*x/2)**4 + 12*a**2*d*tan(c/2 + d*x/2)**2 + 6*a**2*d) + tan(c/2 + d*x/2)**7/(6*a**2*d*
tan(c/2 + d*x/2)**4 + 12*a**2*d*tan(c/2 + d*x/2)**2 + 6*a**2*d) - 19*tan(c/2 + d*x/2)**5/(6*a**2*d*tan(c/2 + d
*x/2)**4 + 12*a**2*d*tan(c/2 + d*x/2)**2 + 6*a**2*d) - 71*tan(c/2 + d*x/2)**3/(6*a**2*d*tan(c/2 + d*x/2)**4 +
12*a**2*d*tan(c/2 + d*x/2)**2 + 6*a**2*d) - 39*tan(c/2 + d*x/2)/(6*a**2*d*tan(c/2 + d*x/2)**4 + 12*a**2*d*tan(
c/2 + d*x/2)**2 + 6*a**2*d), Ne(d, 0)), (x*cos(c)**4/(a*cos(c) + a)**2, True))

________________________________________________________________________________________

Giac [A]  time = 1.37358, size = 128, normalized size = 1.12 \begin{align*} \frac{\frac{21 \,{\left (d x + c\right )}}{a^{2}} - \frac{6 \,{\left (5 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 3 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )}^{2} a^{2}} + \frac{a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 21 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{6}}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

1/6*(21*(d*x + c)/a^2 - 6*(5*tan(1/2*d*x + 1/2*c)^3 + 3*tan(1/2*d*x + 1/2*c))/((tan(1/2*d*x + 1/2*c)^2 + 1)^2*
a^2) + (a^4*tan(1/2*d*x + 1/2*c)^3 - 21*a^4*tan(1/2*d*x + 1/2*c))/a^6)/d